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Abstract
Implementation of automation and machine learning surrogatization into closed-loop computa-

tional scientific workflows is an increasingly popular approach to accelerate materials discovery.

However, the scale of the associated speedup from this paradigm shift over traditional manual ap-

proaches remains an open question. In this work we rigorously quantify the acceleration from each

of the components within a closed-loop framework by probing four sources of speedup: (1) automa-

tion, (2) calculation runtime improvement, (3) guided design space search, and (4) machine-learning

surrogatization. This is done through the timing of automated software and corresponding manual

computational experiments. Stemming from a combination of the first three speedup sources, we

estimate that acceleration of materials discovery by over 10× can be achieved. By introducing

surrogatization into the loop, we estimate that this can be further improved to 15–20×. This work

highlights the value in closed-loop approaches towards accelerating materials discovery.

Keywords: automated high-throughput DFT, sequential learning, computational materials discovery9

I. INTRODUCTION10

Discovery of materials is a central barrier to next-generation energy technologies such11

as more efficient and environmentally friendly electrochemical synthesis processes. One12

particular example is to substitute the environmentally harsh Haber-Bosch process used to13

synthesize ammonia by identification of candidate materials that can catalyze the reaction14

electrochemically [1, 2]. However, finding such optimal candidates efficiently remains a15

challenge due to the large size of the feasible candidate space [3]. Development of methods16

to accelerate this search, even within a relatively bounded design-space, is crucial to meet17

approaching climate goals.18

These considerations have motivated significant research into new methods for acceler-19

ated materials discovery, both experimentally and computationally [4, 5]. In the context of20

experimental screening, much research focus has taken the form of robotic experimentation21

for applications such as searching for battery electrolytes [6], finding thermally stable per-22

ovskites [7], and optimizing battery charging protocols [8]. These studies tend to employ a23
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combination of robots to automate experimental tasks and a learning agent to guide sub-24

sequent studies, closing the loop. However, the trade-off is that automated experimental25

setups are highly application specific and difficult to adapt to new applications where dif-26

ferent tasks may be required. Thus experimental workflows show much promise, but are at27

present limited in terms of generalizability.28

In contrast, fully computational workflows are appealing due to being mainly compute-29

limited and are relatively more flexible in terms of application. These workflows share some30

similarities to closed-loop experimental workflows, with computational calculations substi-31

tuted for experiments and algorithms for iteratively selecting candidates from the design32

space. Adding new tasks to computational workflows demands only additional compute33

resources, rather than physical materials necessary to synthesize and test new candidates.34

This allows for improved modularity for transferring existing closed-loop software compo-35

nents between different materials workflows. The use of an iterative guided design space36

search has demonstrated encouraging results in terms of speeding up materials discovery37

[9–25]. Consequently, multiple computational closed-loop workflows have been developed38

for applications such as catalyzing electrochemical CO2 reduction and hydrogen evolution39

[26], finding stable iridium oxide polymorphs [27], and discovering stable binary and ternary40

systems [28]. In each of these studies, the guided candidate searches showed notable im-41

provement in finding promising candidate materials over a random search.42

While computational closed-loop frameworks demonstrate a promising approach to accel-43

erate materials discovery, quantification of their benefits over more traditional approaches44

remains challenging. In particular, the degree to which cumulative speedups of a fully au-45

tonomous closed-loop framework combine to accelerate materials discovery remains unclear.46

To our knowledge, a detailed breakdown of sources of acceleration along with relative quan-47

titative impacts on speedup has not been previously explored.48

In this study we quantify the acceleration estimates of a closed-loop computational frame-49

work for an electrocatalysis application. We probe two types of fully autonomous computa-50

tional workflows (Figure 1): i) a closed-loop framework consisting of high-throughput density51

functional theory (DFT) calculations which feeds into a sequential learning (SL) algorithm52

that can select the next batch of candidate systems (thereby closing the loop) and ii) an53

extension of the previous framework where the cycle has produced enough DFT data that a54

machine learning (ML) surrogate can be trained to a desired accuracy and replace the heavy55
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DFT calculations. Four categories of acceleration are considered:56

1. Comprehensive end-to-end automation of computational workflows57

2. Runtime improvements of atomic compute tasks58

3. Efficient search over vast design spaces using uncertainty-informed SL, and59

4. Surrogatization of the most time-consuming tasks with ML models60

Within each of these categories we estimate respective speedups and accumulate them into61

overall acceleration metrics. For end-to-end streamlining we estimate the attributed speedup62

through timing comparisons of the automated tasks and their manual analogues. In addition,63

we introduce a human-lag model to simulate user-related delays associated with manual job64

management on a computing cluster. Acceleration from improved runtimes of the compute-65

tasks are presented in terms of both calculator settings and initial structure guesses for66

DFT structural relaxations. This is done via calculations for relaxing OH onto the hollow67

sites of a sample single-atom alloy, Ni1/Cu(111). Efficiency improvements in design-space68

searching are presented here via a simulated SL search on a sample problem of optimizing69

binding energies of CO. Speedup from leveraging ML-surrogates for energy prediction is70

estimated via DFT training set size needed to reach the desired model accuracy. Finally, we71

then accumulate these results into an overall acceleration for workflows both excluding and72

including surrogatization. Through a combination of improvements in each of the above73

areas, we demonstrate a reduction in time to discover a new promising electrocatalytic74

material by 80-95% when compared to conventional approaches.75

II. RESULTS76

Each of the forms of acceleration described above can synergize to provide overall speedup77

in materials discovery. We benchmark the acceleration of each individual category through78

timing estimates of the relevant components both within a closed-loop automated work-79

flow and for equivalent tasks when using the traditional approach. For quantifying the80

baseline materials discovery estimates, we use a combination of both modeling and man-81

ual timing experiments. For the automated tasks, we use the AutoCat (https://github.82

com/aced-differentiate/auto_cat) and DFT-in-the-Cloud (DFTitC) software packages83
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FIG. 1. Closed-loop materials discovery frameworks, a) without and b) with machine learning sur-

rogates for the density functional theory calculations, to be considered in this work for acceleration

quantification.

in tandem. Manual timing experiments use the Atomic Simulation Environment (ASE) [29]84

software package. Additional details are provided in Section V.85

As an example design space, we chose the single-atom alloy (SAA) class of materi-86

als. SAAs are host transition-metals whose surface contains dispersed atoms of a different87

transition-metal species, and have shown much promise for electrocatalysis applications [30].88

In particular, we focused our efforts on probing SAA systems that can catalyze electrochem-89

ical ammonia synthesis.90

In the following subsections we discuss each of the individual acceleration categories and91

how their estimates were obtained. This is followed by acceleration estimates of the full92

workflow combining all sources of speedup to obtain a single acceleration estimate from the93

automated approach relative to the traditional baseline.94
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A. Automation of Computational Tasks and Workflows95

Within a standard computational study, there are many time-consuming tasks related to96

preparing, managing, and analyzing DFT calculations. In Figure 2 we visualize a typical97

pipeline for a computational electrocatalysis study. Each of the boxes underneath a head98

symbol represents a task where user involvement is required in the traditional paradigm. This99

includes structure generation, DFT pre- and post-processing, and job management. Thus,100

every box in the pipeline that relies on user intervention is an opportunity for streamlining101

through automation.102

FIG. 2. Workflow for computational investigation of materials for electrocatalysis applications using

density function theory. Blue boxes indicate computational tasks which typically require researcher

input. Factors above each task indicate potential acceleration through automation. Orange boxes

are geometry optimizations via density functional theory calculations.

To best benchmark the traditional workflow against an automated one, we define the103

same objective for both paradigms: calculation of the adsorption energies of OH on the104

SAA of a Ni atom embedded on a Cu 111 surface, designated as Ni1/Cu(111). This is105

further bounded to specifically include adsorption on all surface three-fold sites (6 in total).106

The goal is to mimic the scenario where an activity descriptor has already been identified107

for a specific electrochemical reaction, thereby collapsing performance predictions to the108

adsorption energy of a single adsorbate, as done previously [26]. As will be discussed later,109
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this represents an optimization problem of a binding energy across a set of possible SAAs110

using SL to design the experiments. Previously, we have published methods to identify the111

most robust descriptors for a given reaction based on uncertainty quantification techniques112

[31, 32]. It should be noted that while automation generally replaces tasks that are on the113

order of seconds and minutes, the accelerations reported from this category free up the user114

to work on more analytical and constructive tasks, as elaborated in Section III.115

All of the necessary steps to obtain the specified adsorption energies are highlighted116

in Figure 2. A comparison of the estimated time required for each task in the traditional117

approach and our automated approach is provided in Table I. Below, we outline the potential118

acceleration for each task via automation.119

1. Candidate structure generation120

As an input, DFT requires atomic scale structural representations of the candidate sys-121

tems to be evaluated. Structure generation in the context of electrocatalysis consists of122

generation of the catalyst structure without any reaction intermediates, identification of all123

of the possible adsorbate sites, and placement of the reaction intermediates on the sites of124

interest. In this work we are not considering solvation effects. The first task corresponds125

to writing and executing scripts to generate the clean Ni1/Cu(111) slab via either ASE or126

AutoCat (corresponding to the manual and automated approaches, respectively), and com-127

paring the relative timings. While ASE has functions tailored for the generation of some128

classes of systems, additional user involvement is necessary for those that are not currently129

implemented. As an example, ASE does not currently have functions geared specifically130

towards SAAs, and thus additional scripts are necessary to perform the doping of the pure131

slabs. To generate each SAA the dopant site needs to be identified, the substitution made,132

and spin polarization added to both the host and dopant as necessary. We can contrast133

this with automation software such as AutoCat which has a function built on top of ASE134

to streamline the generation of these SAA systems. Here, AutoCat can be viewed as fully135

automating ASE towards a specific application (in this case, SAAs). Moreover, the code is136

catered towards generating multiple SAAs through a single function call by the user that137

writes to disk in an organized, predictable fashion. By leveraging tools for streamlined138

candidate structure generation, a speedup of approximately 500× is observed. Thus, au-139
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tomation of this task, while relatively straightforward in some cases, does present an avenue140

for workflow acceleration.141

Estimation of manual site identification for the second task of adsorbate placement re-142

quires measuring the time it takes a graduate student team member to identify all of the143

symmetrically unique surface sites of Ni1/Cu(111). This task becomes increasingly challeng-144

ing from a user standpoint as the candidate catalyst becomes more elaborate, particularly145

with broken surface symmetries. For example, in the case of SAAs, the presence of the146

single-atom breaks many of the symmetries, and correctly identifying all unique sites by147

hand is nontrivial. Some sites that would be regarded as symmetrically equivalent on a uni-148

form surface can no longer be regarded as such due to the substitution of the single-atom. In149

contrast, AutoCat identifies symmetry sites via the Delaunay Triangulation implementation150

within the pymatgen software package [33], providing a systematic automated approach to151

site identification that does not require user intervention. Comparison of the time required152

for a graduate student team member to identify all of the sites relative to the automated153

approach shows a speedup by a factor of 1000×. In summary, comparing the timings of154

these three tasks (catalyst surface generation, site identification, and adsorbate placement)155

highlights the effect of automation with regard to candidate structure generation tasks.156

2. Density functional theory pre- and post-processing157

For every catalyst structure generated, geometry optimizations via DFT calculations are158

required. The total energies from these relaxed structures can then be used to estimate159

properties of interest, such as adsorbate binding energy. Preparation for each of these160

calculations involves writing DFT input files and scripts to submit these calculations to high-161

performance computing (HPC) resources. The DFT input files contain all of the calculation162

settings to be used, such as the k-mesh and exchange-correlation functional. In addition,163

job submission scripts contain information about the requested computational resources164

on a cluster, including the number of cores needed and the wall-time before the job will be165

forcibly stopped. These scripts are necessary for every DFT calculation, and thus present an166

opportunity for automation. To obtain a baseline, we time a user performing both the above167

script writing tasks, i.e., generating DFT input files and batch submission scripts. This is168

then compared to the time required for the equivalent tasks within our DFTitC framework.169
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We observe that these automated tasks are approximately 1000× faster than their manual170

equivalent, again emphasizing that the automation of these DFT pre-processing tasks is a171

worthwhile effort.172

Additionally, once the DFT calculations have successfully completed, the compilation of173

results and data can consume a significant amount of time. The user must read through174

each of the DFT output files, extract the desired information, and collect and organize this175

data. Scaling up to a large number of systems, and thus calculation outputs, this can quickly176

become a sizeable task. Here, we take timings of how long our DFTitC software takes to177

parse the output data and compare it to the time taken to manually read all of the output178

files and collect all of the data into a single spreadsheet. From automating this compilation179

procedure we observe a speedup by a factor of 20×.180

Given reference states, adsorption energies can be calculated from the total energies. We181

thus compare the time required to calculate these adsorption energies within a spreadsheet to182

that of automated calculations, which we observe to be 100× faster when streamlined. This183

final post-processing step of calculating the adsorption energies is relatively quick regardless184

of the approach taken compared to the other steps considered in this workflow.185

3. Workflow integration186

In addition to the automation of structure creation and DFT pre- and post-processing187

as described above, the automation of the submission of batch jobs to HPC clusters, status188

monitoring, and general job management also provide opportunities for significant acceler-189

ation. DFT calculations of catalyst structures are computationally expensive and typically190

require active monitoring by the researcher. In particular, as these calculations can take191

variable lengths of time, they may demand user intervention. For example, this could be to192

fix errors or resubmit jobs, often at unpredictable times. This introduces “human lag” as it193

is not possible for the typical researcher to continuously monitor the status of all submit-194

ted DFT jobs. Here, human lag is modelled via a Monte Carlo sampling approach. First,195

days are subdivided into three different windows representing typical working hours, hours196

where some monitoring may occur, and hours where usually no monitoring would occur,197

with “checkpoints” in time defined for each. Next, a uniform distribution is assumed for the198

job finishing on any day of the week, without any preference for weekdays or weekends. Fi-199
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nally, we simulate the process of completion of a DFT job followed by research action at the200

nearest checkpoint in time, gathering statistics for a total of 106 DFT jobs, such as average201

lag per DFT job. In contrast, since job management within the fully-automated workflow202

is handled by a pipeline involving DFTitC and the fireworks [34] software package, there203

is no equivalent human lag, which enables significant acceleration.204

Workflow step Traditional Automated Acceleration

Catalyst structure generation

Clean surface 16 min 2 s ∼500x

Site identification 10 min 1 s ∼1000x

Adsorbate placement 9 min 1 s ∼1000x

DFT pre- and post-processing

Generating DFT input and job management scripts 9 min 1 s ∼1000x

Data collection 3 min 9 s ∼20x

Adsorption energy calculation 2 min 1 s ∼100x

DFT job submission and management

Job resubmission and error handling 9 hr – –

TABLE I. Acceleration from automation of computational tasks and workflows.

B. Calculation Runtime Improvements205

In the next category of acceleration, we quantify the speedup of calculation runtimes.206

Within our electrochemical materials discovery workflow, the primary physics-based simula-207

tion is DFT. As these calculations can be time-intensive, improving their runtimes is crucial208

in achieving significant acceleration.209

In the case of adsorption structures, the initial guesses of the adsorbate geometry can210

play a key role. If the initial guess is far from the equilibrium geometry, more optimization211

steps will be required to achieve relaxation. Since each step requires a full DFT calculation212

to get the energy and forces, the initial guess should ideally be as close to the equilibrium213
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as possible to decrease the overall calculation runtime. The total runtimes of geometry214

optimizations via DFT can also be heavily influenced by the choice of calculator settings,215

such as initial magnetic moment. Starting with a poor guess of the initial magnetic moment216

could result in longer time to achieve convergence in the DFT algorithm. To decouple the217

influences of both initial geometry guess and appropriate choice of calculator settings, we218

run four sets of relaxations for OH on all of the hollow sites of Ni1/Cu(111). We use two219

initial geometry guesses, one of which we call a chemically informed configuration as it220

is relatively close to the relaxed configuration. The initial height for this configuration is221

guessed based upon the covalent radii of the nearest neighbors of the anchoring O atom. For222

comparison, a chemically naive configuration is also considered where the initial geometry223

is further from the relaxed configuration, with the OH bond angle at 45° with the surface.224

Moreover, the initial height in this case is taken to be 1.5 Å above the surface. In addition to225

the different geometries, we also take two approaches to setting the initial magnetic moment226

of the single-atom. One approach is to choose the initial magnetic moment based on the227

ground-state magnetic moments of the single-atom species from ASE. This approach tailors228

the selection of initial magnetic moment to each particular system. Alternatively, we also229

test applying a default starting initial magnetic moment of 5.0 for the dopant, regardless230

of the identity of the single-atom species. This is a relatively naive approach as it does231

not incorporate details of the specific system for this choice of setting. In this specific case232

of Ni1/Cu111, since the structure prefers to be in a spin-paired state (i.e., without spin-233

polarization), the former approach provides a guess closer to the actual spin-polarization for234

which the system converges. Our intention here is to highlight the impact of these aspects235

of the DFT calculations on acceleration and could stem from deterministic algorithms, an236

ML model, or another approach entirely.237

In Figure 3 we visualize the accelerations of the DFT runtimes from both the calculation238

settings and initial geometries. Firstly, we observe relatively modest speedups from choice239

of calculator settings with average values of approximately 1.1× for both the naive and240

informed geometries. For these calculations, the system converges to the non-polarized241

state within the first few steps. Thus the observed speedup from choice of initial magnetic242

moment of the single-atom is mainly a reflection of these initial iterations while it finds243

the appropriate spin state, which often take the longest. On the other hand, we observe a244

larger acceleration effect from the initial geometry. When keeping the settings to be chosen245

11



naively or tailored while changing the initial geometry, we observe a speedup of 2.1× and246

2.2×, respectively. The speedup described here can be mainly explained by the decrease in247

the number of steps required to reach the equilibrium configuration for a fixed optimization248

scheme. Using the tailored calculation settings, an average of approximately 33 and 16249

geometry optimization steps with the Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm250

are taken when starting from the chemically naive and informed geometries, respectively.251

Similarly, when using the naive calculation settings the average number of optimization252

steps for the chemically naive geometry is 34 and for the chemically informed geometry253

it is 17. Thus, methods to decrease the number of steps taken to reach equilibrium and254

shorten the DFT compute time at each step are highly desirable, and are an area of active255

development [35–40]. Combining both the improved initial geometry as well as the choice256

of calculator settings yields the largest runtime acceleration observed in this work of 2.3×,257

thus motivating the consideration of both variables within automated workflows. As will be258

discussed in greater detail in section II E, DFT takes up a substantial portion of the overall259

pipeline runtime, and thus this acceleration factor is indicative of potentially enormous260

improvements in overall acceleration.261

Workflow step Traditional Automated Acceleration

DFT calculation settings and initial structure guess

Clean substrate relaxation 21 hr 18.5 hr ∼1.1x

Substrate + adsorbate relaxation 46 hr 20 hr ∼2.3x

TABLE II. Acceleration from calculation runtime improvements.

C. Efficient Design Space Search262

Next, we estimate the acceleration resulting from use of a SL workflow for selecting and263

evaluating candidates in a design space of catalysts and compare it to that of traditional264

approaches. The SL workflow proceeds as follows: (1) start with an initial set of a small265

number of training examples of catalyst candidates and their properties; (2) build ML models266

using the initial set of training examples and predict the objective properties of all the267

candidates in the design space of interest; (3) use an acquisition function that considers268
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FIG. 3. Estimated density functional theory geometry optimization runtime accelerations. These

are decoupled between chemically informed or naive initial geometries, and tailored or naive cal-

culation settings. The largest factor of acceleration is observed when using an informed structure

generation with tailored calculator settings.

model predictions and uncertainties to select the next candidate to evaluate; (4) evaluate269

the selected candidate and add it with its newly obtained label to the training set; (5) iterate270

steps 2–4 in a closed-loop manner until a candidate, or a certain number of candidates, with271

the target properties has been discovered. A detailed schematic of this workflow is presented272

in Figure 4. Such a strategy has been previously shown to be more efficient in sampling273

the design space to find novel candidates by a factor of 2 − 6× over traditional grid-based274

searches or random selection of candidates from the design space [9–25].275

For benchmarking the acceleration from SL for a typical catalyst discovery problem, we276

use a dataset of ∼300 bimetallic catalysts for CO2 reduction [41]. The dataset contains277

∼30 candidates with the target property of ∗CO adsorption energy on the catalyst surface278

inside a narrow window of [−0.7 eV, −0.5 eV]. We perform an SL simulation, starting with a279

small initial training set of 10 examples from the above dataset, and iterate in a closed-loop280

as described above until all the target candidates in the design space have been identified281
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FIG. 4. A typical closed-loop sequential learning workflow for computational discovery of novel

catalyst materials.

successfully, and benchmark the acceleration against random search. In particular, at each282

SL iteration, we build random forest-based models using the lolo software package [19], and283

predict the ∗CO adsorption energies of all candidates along with robust estimates of uncer-284

tainty in each prediction. The next candidate to evaluate is chosen based on the maximum285

likelihood of improvement (MLI) acquisition function. This function selects the system with286

the maximum likelihood of having an adsorption energy in the [ −0.7 eV, −0.5 eV] window,287

when considering both the predicted value as well as its uncertainty. Overall we find that288

such an SL-based workflow successfully identifies all ∼30 target candidates 3× faster than289

random search (Figure 5a). In addition, we note that the candidates surfaced by SL, on290

average, have properties closer to the target property window than those surfaced by random291

search, even when those candidates do not explicitly fall within the window (Figure 5b). In292

other words, in addition to discovering target candidates considerably more efficiently than293

random search, an SL-based approach surfaces potentially interesting candidates near the294

target window much more frequently than random search.295

D. Surrogatization of Compute-Intensive Simulations296

For the last category of acceleration, we estimate the extent of further possible speedup297

through the surrogatization of the most time-consuming tasks in the workflow. In particular,298
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FIG. 5. Comparison of random search vs sequential learning (SL)-driven approach to find new

bimetallic catalysts with a target property. (a) Overall, the SL-driven approach identifies all the

33 target candidates in the dataset within 100 iterations, ∼3× faster than random search. (b)

Candidates surfaced via SL lie much closer to the target window on average, when compared to

those identified via random searching. (c) An SL-driven approach can help identify a much smaller

number of examples that can be used to train ML surrogates to a desired accuracy, at a fraction of

the overall dataset size. Here, the overall dataset has ∼300 candidates, and an ML model trained on

only ∼25% of the candidates chosen via a SL-driven maximum uncertainty-based approach achieves

the target accuracy.

the rate determining step of the closed-loop framework considered here is the calculation299

of the binding energies of adsorbates using DFT. ML models can be used as surrogates for300

physics-based simulations of material properties often at a fraction of the compute cost and301

with marginal loss in accuracy. The primary cost of building such ML surrogates for mate-302

rials properties often lies in the generation of training data where such data does not exist,303

especially when the data generation involves compute-intensive physics-based simulations304

such as DFT. Here we estimate the size of such training data required to build and train305

ML surrogates with a target accuracy, especially when such training data is iteratively built306

using an SL-based strategy.307

We use the dataset of bimetallic catalysts for CO2 reduction mentioned in Section IIC308

within a SL workflow to simulate an efficient, targeted training set generation scheme. Sim-309

ilar to the SL workflow employed in the search for novel catalyst materials in a design space310

of interest, we employ a closed-loop iterative approach to generate the training data and311

address model uncertainty. We start with a small initial training dataset of 10 systems,312
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build random forest models to predict adsorption energies, and iteratively choose the next313

candidate to build the training data. With model accuracy in mind, we employ an acquisi-314

tion strategy that optimizes for the most accurate ML model on average. In particular, at315

each iteration the candidate whose property prediction has the maximum uncertainty (MU)316

is selected to augment the training data. Inclusion of such a candidate results in the high-317

est improvement of the overall accuracy of the ML model by targeting areas of the design318

space which are not well reproduced by the model. Using an accuracy threshold of interest,319

we then determine the fraction of the overall training data necessary for building useful ML320

surrogates. For instance, with a threshold of 0.1 eV (the typical difference between DFT and321

experimental formation energy values [42]), we estimate that accurate ML surrogates can be322

trained using a dataset generated via the above SL-strategy with ∼25% of the overall dataset323

size (Figure 5c). The accuracy metric here is calculated via a bootstrapping approach for324

the test set, with additional details provided in the Supplementary Information.325

E. Overall Acceleration of the Full End-to-end Workflow326

Finally, we aggregate the acceleration from the various steps in the workflow to estimate327

the overall speedup achieved. Here, we use the single-atom alloys (SAA) design space for328

calculating the overall estimates. We begin by estimating the size of such a design space.329

Limiting the design space to ∼30 transition metal hosts and dopants results in a total of330

∼30C2 ≈ 900 SAA systems. For each SAA system, typically a few (3–5) low-index surface331

terminations are considered. Moreover, the considered reaction intermediate can adsorb332

onto the catalyst surface at one of many possible symmetrically unique sites (up to 20–40333

configurations), and all such possible intermediate configurations need to be considered in334

the design space. Overall, a typical SAA design space when fully enumerated can have up335

to 105–106 possibilities.336

Using the above SAA design space, we apply the estimated time for each step in our overall337

end-to-end catalyst workflow as derived in the previous sections, using both traditional and338

automated methods (with and without surrogates), and calculate the overall speedup. From339

the automation of tasks and workflows, and runtime improvements alone, we achieve an340

acceleration of ∼10× (a reduction of ∼90%) over traditional materials design workflows.341

Further utilizing the ML surrogates (including the compute costs required to generate the342
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training data) can result in an acceleration of up to ∼25× (a reduction of up to ∼96%) over343

traditional approaches.344

Approach Structure Substrate Adsorbate Catalyst Data Post-processing Design Space Total

Generation Calculation Placement Calculation Usage Search Factor Acceleration

Traditional 16 min 21 hr 18 min 72 hr/i.c.1 100% 5 min 1

Automated 2 s 18.5 hr 2 s 20 hr/i.c.1 100% 10 s 0.33 10×

+ Surrogates 2 s – 2 s 20 hr/i.c.1 10-25%2 2 s 0.33 15-20×

TABLE III. Overall acceleration benchmarks for the end-to-end workflows with and without sur-

rogatization. We demonstrate a speedup of up to 10x with automation of tasks and runtime im-

provements, and a speedup of up to 25x upon using ML surrogates for the most compute-intensive

DFT tasks. 1i.c. = intermediate configuration (total # i.c. ≈ 200/catalyst system); “traditional”

includes human lag estimates. 2estimate from bimetallic catalyst dataset of the relative amount of

DFT data needed to reach a target accuracy of 0.1 eV/adsorbate.

III. DISCUSSION345

The results presented here have implications that reach beyond the reported factors of346

acceleration. Here, it is helpful to make a distinction between project time and researcher347

time. We consider project time as the time necessary to carry a project to completion. In348

other words, this is an accumulation of all the time spent towards achieving the tasks to349

reach the project goal. Thus, all the acceleration factors quantified above are with respect350

to this project time. Therefore, these workflows are anticipated to have a direct impact on351

project time to completion. In addition, by breaking down the acceleration benefits for each352

component of the workflows, estimates of project time acceleration for differing framework353

topologies (e.g. multi-scale evaluation) than those outlined here can be inferred.354

On the other hand, researcher time can be interpreted as time spent from the frame355

of reference of the researcher on a given workday. The acceleration associated here is not356

directly quantified as we have done with project time. Instead, this acceleration is an indirect357

consequence of implementing these workflows. The most obvious example of this influence358

is through task automation. In the traditional paradigm, these tasks can become time-359
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consuming, particularly as the scale of the project increases. Automation frees up valuable360

researcher time that would normally be occupied by the more mundane tasks. This allows361

the researcher to instead focus on more intellectually demanding tasks such as performing362

literature surveys and project formulation, improving research productivity.363

Automating job management has the benefit of impacting both project time and re-364

searcher time. Since this form of automation facilitates running computational jobs around-365

the-clock, the human-lag as described by our model is entirely removed. If a job were to366

finish outside of working hours, there will not be any lag. This decreases the project time367

as described above. In the context of researcher time, this automation also has the added368

benefit of decreasing the need for regular job monitoring. Thus, during the day a researcher369

can devote more time towards other tasks.370

A few additional observations regarding the nature of the baselines used to estimate371

the speed of traditional approaches in this work are warranted. First, for estimation of372

task timings such as input file generation for simulations and script generation to submit373

jobs on HPC resources, we use time estimates from a single researcher. The timings of374

such tasks are inherently variable, depending on the exact nature of the task, the researcher375

performing it, as well as the environmental setup in which it is performed. Similarly, natural376

delays associated with monitoring and managing ongoing computational jobs depend on the377

working habits of the researcher, the time-scale associated with each computation (e.g., those378

that take hours opposed to days or weeks to complete), and the availability or connectivity379

of the computational resources (e.g., on-site resources versus those that can be accessed380

remotely). Lastly, to estimate the acceleration from an intelligent exploration of the design381

space using sequential learning, we use random sampling as the benchmark. While random382

sampling is an excellent exploratory acquisition function [43], it is not a substitute for383

traditional methods of design space exploration. Typically, traditional search approaches384

are influenced by prior knowledge, research directions within the community at the time,385

available resources, among other factors. We use random search here, not least because a386

model to predict a traditional materials design trajectory does not exist, to our knowledge,387

but also because it is widely-used as an unbiased exploratory baseline [9–13, 15–17, 19–25].388

We want to emphasize that, given some of the variability in the baselines as discussed389

above, the goal of this work is to highlight the scale of acceleration that can be attributed to390

the several individual components in a computational materials design workflow. Moreover,391
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we also aim to highlight the challenges associated with estimating such factors of accelera-392

tion, and not necessarily the raw factors themselves. Our work underscores the benefits of393

data collection and sharing, especially around time spent on research tasks, monitoring and394

managing medium- to high-throughput computational projects, implementing traditional395

approaches of materials discovery and design trajectories, and handling failed computations396

and experiments. We recommend a community-driven initiative towards such data collec-397

tion and sharing efforts to bolster our understanding of the traditional baselines as well as398

to further contextualize the significant benefits of automation and ML-guided strategies.399

IV. CONCLUSION400

In this work we demonstrate that software automation and runtime improvements com-401

bined with a sequential learning-based closed-loop search over a design space for new cat-402

alysts can provide an overall acceleration of more than 10x (or more than 90% reduction403

in overall time/cost) over traditional approaches. Further, we estimate that such automa-404

tion frameworks can have a significant impact on researcher productivity (20–1000×), direct405

compute costs (1.1–2.3×), and project/calendar time (>10–20×). This was estimated us-406

ing 3 sources of acceleration. Through combination of manual computational experiments407

with timing of automated equivalent tasks, we provide speedup estimates stemming from408

each category. Automation of tasks can provide improved discovery time by streamlining409

tasks that usually need to be completed via user intervention. We also identify that signifi-410

cant speedup in terms of DFT runtime can be achieved through better initial prediction of411

the catalyst geometries and calculator settings. Moreover, the use of a sequential learning412

framework to guide design of experiments can accelerate discovery by a factor of 3, thereby413

dramatically decreasing the number of full loop iterations that need to be performed to reach414

a given design goal. We extend this analysis to include replacement of DFT calculations with415

machine-learning surrogates, another source of acceleration, and observe that this discovery416

speedup factor can be further improved to >15–20×. We believe that the results outline the417

immense benefits of introducing automation and machine learning into scientific discovery418

workflows, and motivate the increasingly widespread adoption of these methods.419
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V. METHODS420

A. Workflow Topology421

In this work we consider two different closed-loop topologies. The first is a two-stage422

process consisting of DFT calculations to calculate adsorption energies which are then fed423

into a SL model to iteratively guide candidate selection (Figure 1a). Within the DFT424

stage, multiple steps need to be taken for study of an electrocatalysis problem. Namely, a425

geometry relaxation of the clean candidate system, followed by a relaxation of all reaction426

intermediates onto the unique surface symmetry sites. These DFT calculations are taken427

to be automated within a pipeline. Here we use a combination of AutoCat (https://428

github.com/aced-differentiate/auto_cat) for automated structure generation and the429

DFTitC ecosystem for the calculations themselves. More details on these software packages430

are provided in Section VB. The SL stage then serves to guide the design space search by431

iteratively identifying candidates to evaluate on each loop. Additional details on the models432

used for this purpose are described in Section VD.433

Another topology we consider is an extension of that described above with ML surrogates434

for the DFT calculations introduced into the loop (Figure 1b). In this scenario, the first few435

overall iterations proceed the same as before, except now as the DFT data is generated, a436

surrogate ML model is trained on the resulting data until a threshold test accuracy is reached.437

For these first number of iterations, candidates are selected with the intent of improving438

prediction accuracy. Once the threshold accuracy for the surrogate is met, all subsequent439

iterations of the loop will instead use the surrogate to obtain adsorption energies. From this440

point onward candidate selection is then focused on identifying promising materials using this441

trained ML model for continued exploration, as before in the loop without surrogatization.442

Motivation for such an approach stems from the computationally demanding nature of DFT443

calculations which is an inevitable bottleneck of these calculations. Swapping these heavy444

calculations for an essentially zero-cost alternative to obtain the same results is desirable in445

terms of overall speed. If desired, candidates identified via the ML model surrogate can be446

validated using DFT, but we are not including this aspect explicitly in our analysis. Thus,447

in this extended workflow we place emphasis on the number of DFT calculations necessary448

to obtain a surrogate meeting the minimum testing accuracy.449
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B. Automation Software450

To create the atomic structures for the DFT calculations, we use AutoCat, a software451

package with tools for structure generation and sequential learning for electrocatalysis ap-452

plications. This package is built on top of the Atomic Simulation Environment (ASE) [29]453

and pymatgen [33] to generate the atomic structures en masse, and write them to disk follow-454

ing an organized directory structure. To generate single-atom alloys, AutoCat has tailored455

functions for this purpose with optional selection of supercell dimensions, vacuum spacing,456

as well as number of bottom layers to be fixed, with appropriate defaults for each parameter.457

Moreover, through the use of pymatgen’s implementation of Delaunay triangulation [44], all458

of the unique symmetry sites on an arbitrary surface can be identified. Furthermore, initial459

heights of adsorbates are estimated through the covalent radii of the anchoring atom within460

a given adsorbate as well as its nearest neighbors. As the development of this package is461

part of an ongoing work, additional details will be reported in a future publication.462

Once the catalyst with adsorbate systems have been generated by AutoCat, the crystal463

structures are used as input to an automated DFT pipeline that (a) generates input files464

for a DFT calculator (here we use GPAW[45, 46]), (b) executes DFT calculation workflows,465

and (c) parses successfully completed calculations and extracts useful information.466

Automatic DFT input generation: We leverage the Python-based dftinputgen package467

(https://github.com/CitrineInformatics/dft-input-gen) to automate the generation468

of DFT input files from a specified catalyst/adsorbate crystal structure. In particular, we469

extend the dftinputgen package to support GPAW. For a given input crystal structure, the470

package provides sensible defaults to use for commonly-used DFT parameters based on prior471

domain knowledge for novice users as well as fine-grained control over each parameter for472

more experienced DFT practitioners. The package also implements, “recipes”, sets of DFT473

parameters and values to be used as default depending on the properties of interest, e.g.,474

ground-state geometry and electronic structure. The package outputs input files in a user-475

specified location that can be directly used by mature DFT packages as input for calculation.476

477

Execution of DFT calculation workflows: We leverage the Python-based fireworks [34] pack-478

age to both define complex sequences of DFT subcalculations necessary for electrocatalysis479

studies (e.g. clean surface relaxation followed by adsorption relaxation), and to create,480
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submit, and monitor batch jobs on HPC resources that correspond to such a sequence of481

subcalculations. These scripts are part of an ongoing study and will be open-sourced.482

Parsing output from DFT: After having completed DFT calculations on a large number of483

different candidate systems, key metrics such as total energy and forces would need to be ex-484

tracted in bulk. To accomplish this task we have extended the previously-developed pif-dft485

(https://github.com/CitrineInformatics/pif-dft) and dftparse (https://github.486

com/CitrineInformatics/dftparse) packages to parse output generated via GPAW. Func-487

tions written for this package can look for a .traj file resulting from a successful GPAW488

run, in a specified directory. Once a traj file has been identified, it can be read using489

ASE to extract calculated properties of interest. This includes not only results such as490

total energy and forces, but also calculator settings such as the exchange-correlation im-491

plemented. These findings are then written into a Physical Information File (PIF) [47]492

(https://citrine.io/pif), a general-purpose materials data schema, for every calculation493

conducted.494

C. First-Principles Calculations495

All DFT calculations are conducted with the GPAW package [45, 46] via ASE [29]. The496

projector-augmented wave method is used for the interaction of the valence electrons with497

the ion cores. A target spacing of 0.16 Å is applied for the real-space grid, with a Monkhorst-498

Pack [48] k-mesh of 4 × 4 × 1 for all surface calculations. For improved self-consistent field499

convergence, a smearing width of 0.05 eV is applied through the Fermi-Dirac distribution.500

For the computational experiments adsorbing OH onto the Ni1/Cu(111) hollow sites501

described in Section II B, we employ two approaches for both the selection of calculator502

settings as well as initial geometry configuration. With regard to the calculator setting503

approaches, the tailored approach gives the dopant an initial magnetic moment based on504

the ground-state magnetic moment from ASE. On the other hand, the naive approach to505

calculator settings, where a uniform value is given regardless of species (in this case 5.0),506

is used for the dopant initial magnetic moment. In terms of the initial geometries, the507

chemically naive approach places OH at 45° with respect to the surface and an initial height508

of 1.5 Å above the surface. In contrast, the chemically informed initial structure has the OH509

bond as perpendicular to the surface plane. Moreover, the initial height for the chemically510
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informed approach is an average based on the covalent radii of the nearest neighbor species511

at a given xy coordinate. All geometry optimizations are conducted via the BFGS algorithm512

as implemented in ASE.513

D. Machine Learning Models514

All ML models reported in this work are based on random forests [49], consistent with515

the previously-reported FUELS framework [19] and as implemented in the open-source lolo516

library [50]. Materials in the training dataset are transformed into the Magpie features [13],517

a set of descriptors generated using only the material composition, as implemented in the518

matminer package [51]. The uncertainty in a model prediction is determined using jackknife-519

after-bootstrap and infinitesimal jackknife variance estimators [52].520
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